TEORIA DAS ESTRUTURAS I


Determine a faixa de trabalho devido às envoltórias nas seções da viga biapoiada representada na figura abaixo. A mesma está sob um carregamento permanente de 20 KN/m e de um trem-tipo, conforme ilustrado:

Calcule as reações nos apoios da viga devidas a carga permanente de 20 KN/m. A resposta correta é Va=Vb que vale:


30 kN


270 kN


60 kN


120 kN


240 kN

A partir das linhas de influência do momento fletor da figura abaixo, correspondentes às posições críticas do trem-tipo, os momentos Máximos nas seções S1 e S2 valem, respectivamente:


424,12  e 610,5 KN.m


483,33 e 704,42 KN.m


453,33 e 804,42 KN.m


438,00 e 604,88 KN.m


469,50 e 610,50 KN.m

Com base no pórtico ilustrado abaixo marque o valor do cortante no ponto D do trecho DE:


115,4 kN


45 kN


63,4 kN


51,4 kN


58,8 kN

Utilizando a estrutura de concreto armado com seção 20x50, representada na figura abaixo, determine o valor da reação no apoio G, vertical e horizontal nesta sequência e em módulo.



153,00 kN e 18,00 kN


170,40 kN e 38,80 kN


41,70 kN e 24,60 kN


38,00 kN e 153,00 kN


24,60 kN  e 41,70 kN

Qual e o maior valor da forca  cortante,em módulo, no trecho horizontal da estrutura abaixo?


14,4 kN


10,6 kN


15,7 kN


3,2 kN


8,3 kN

Qual e o valor da forca normal no trecho vertical da estrutura abaixo?


8,3 kN tração


10,6 kN tração


15,7 kN tração


14,4 kN compressão


3,2 kN compressão

Qual e o maior valor de momentos  (positivo e negativo) nesta ordem e em modulo, da estrutura abaixo?




0,5 kNm e 0,7 kNm.


0,7 kNm e 0,7 kNm.


0,5 kNm e 1,0 kNm.


1,0 kNm e 0,7 kNm.


0,7 kNm e 1,0 kNm.

Qual o valor do maior esforço normal da estrutura representada na figura abaixo, e verifique se este esforço e de tração ou compressão?


0,5 compressão


2,0 compressão


2,0 tração


0,5 tração


2,0 tração e 0,5 de compressão

Leia os seguintes tópicos abaixo:

I - Rompe-se o vínculo capaz de transmitir o efeito E cuja linha de influência se deseja determinar;

II - Na seção onde atua o efeito E, atribui-se à estrutura, no sentido oposto ao de E positivo, um deslocamento generalizado unitário, que será tratado como sendo muito pequeno;

III - Configuração deformada (elástica) obtida é a linha de influência.

Segundo (SÜSSEKIND, 1980) deve-se seguir três etapas para traçar as LI pelo Método de Müller-Breslau, dos métodos listados nos tópicos acima está (ão) correto (s):


I


III


II


I, II, e III


I e III

O princípio de Müller – Breslau fornece um procedimento simples para estabelecer o formato das linhas de influência para as reações ou para as forças internas (cortante e momento) em vigas. As linhas de influência qualitativas, que possibilitam ser esboçadas rapidamente, podem ser usadas das três maneiras a seguir:

I - Para verificar se o aspecto de uma linha de influência, produzida pelo movimento de uma carga unitária em uma estrutura, está correto.

II - Para estabelecer onde se deve posicionar a carga móvel em uma estrutura para maximizar uma função específica, sem avaliar as ordenadas da linha de influência. Uma vez estabelecida a posição crítica da carga, fica mais simples analisar diretamente certos tipos de estruturas para a carga móvel especificada do que desenhar a linha de influência.

III - Para determinar a localização das ordenadas máximas e mínimas de uma linha de influência, para que apenas algumas posições da carga unitária precisem ser consideradas quando as ordenadas da linha de influência forem calculadas.

Sobre o princípio de Müller – Breslau, os itens I, II e III podemos afirmar o seguinte:


I, II, e III estão corretos


II e III estão corretos


I único correto


III único correto


I e III estão corretos

Páginas: 12345678910
11